Lineare Abbildung

Achsenspiegelung als Beispiel einer linearen Abbildung

Eine lineare Abbildung (auch lineare Transformation oder Vektorraumhomomorphismus genannt) ist in der linearen Algebra ein wichtiger Typ von Abbildung zwischen zwei Vektorräumen über demselben Körper. Bei einer linearen Abbildung ist es unerheblich, ob man zwei Vektoren zuerst addiert und dann deren Summe abbildet oder zuerst die Vektoren abbildet und dann die Summe der Bilder bildet. Gleiches gilt für die Multiplikation mit einem Skalar aus dem Grundkörper.

Das abgebildete Beispiel einer Spiegelung an der Y-Achse verdeutlicht dies. Der Vektor ist die Summe der Vektoren und und sein Bild ist der Vektor . Man erhält aber auch, wenn man die Bilder und der Vektoren und addiert.

Man sagt dann, dass eine lineare Abbildung mit den Verknüpfungen Vektoraddition und skalarer Multiplikation verträglich ist. Es handelt sich somit bei der linearen Abbildung um einen Homomorphismus (strukturerhaltende Abbildung) zwischen Vektorräumen.

In der Funktionalanalysis, bei der Betrachtung unendlichdimensionaler Vektorräume, die eine Topologie tragen, spricht man meist von linearen Operatoren statt von linearen Abbildungen. Formal gesehen sind die Begriffe gleichbedeutend. Bei unendlichdimensionalen Vektorräumen ist jedoch die Frage der Stetigkeit bedeutsam, während Stetigkeit immer vorliegt bei linearen Abbildungen zwischen endlichdimensionalen reellen Vektorräumen (jeweils mit der euklidischen Norm) oder allgemeiner zwischen endlichdimensionalen hausdorffschen topologischen Vektorräumen.


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search